CTDT2

CO₂- und Temperaturtransmitter für die Kanalmontage

Transmitter zur Messung der Kohlendioxid-Konzentration und Temperatur der Luft. Messbereich 0...2000 ppm und CO₂-Ausgangssignal 0...10 V DC oder 4...20 mA (einstellbar). Passiver PT I 000-Ausgang und 0...10 V DC für Temperatur.

- √ Kombinierter CO₂- und Temperaturtransmitter
- ✓ Infrarot-Technologie (NDIR)
- ✓ Messbereich CO₂-Konzentration von 0...2000 ppm
- ✓ Ausgezeichnete Langzeitstabilität
- ✓ Einfache Installation und bedienungsfreundliches Gehäuse
- ✓ Messelement nur 12 mm
- ✓ Automatische CO₂-Kalibrierung

Anwendung

CTDT2 kann eingesetzt werden, um die Lüftung in Wohn- und Büroräumen zu regeln.

Der Kohlendioxid-Gehalt ist ein direkter Indikator für die Luftqualität im Raum. Diese Informationen können genutzt werden, um die Lüftung sehr genau zu regeln und die Luftqualität zu verbessern.

Da der Luftaustausch nur noch dann erfolgt, wenn er notwendig ist, werden die Energiekosten auf ein Minimum reduziert.

Funktion

CTDT2 verfügt über eine Sonde in Form eines Venturirohrs mit zwei Luftkanälen. Das CO₂-

Sensorelement ist im Gehäusedeckel montiert und der Temperatursensor befindet sich in der Messsonde.

Die Luft im Lüftungskanal wird zum CO₂-Sensorelement durch die eine Hälfte der Sonde geleitet, bevor sie dann durch die andere Hälfte wieder zurück in den Kanal geleitet wird. Der Temperatursensor befindet sich in der Messsonde (siehe *Bild 1*).

Installation

Um eine einwandfreie Funktion zu gewährleisten, muss sichergestellt werden, dass die Abdeckung richtig befestigt wurde, und dass die Kabelverschraubung das Kabel dicht umschließt.

CTDT2

Platzieren Sie den Transmitter im Lüftungskanal in Richtung des Volumenstroms entsprechend den Markierungen auf der Abdeckung.

Die Strömungsrichtung des Volumenstroms ist entweder von rechts nach links (siehe *Bild 1*) oder von links nach rechts.

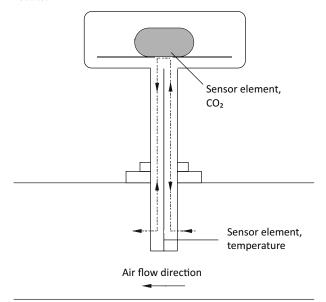


Bild I Installationsbeispiel

Messprinzip

 $\label{eq:convergence} \mbox{Die } \mbox{CO}_2\mbox{-}\mbox{Konzentration wird mit Infrarotlicht gemessen.}$

Diese Technik hat viele Vorteile:

- ✓ Sehr hohe Genauigkeit
- ✓ Genaue Identifizierung des erkannten Gases
- √ Geringes Verschmutzungsrisiko
- ✓ Kurze Reaktionszeit
- ✓ Ausgezeichnete Langzeitstabilität

Automatische Kalibrierung

Durch die automatische CO₂-Kalibrierung des CTDT2 ist eine manuelle Neukalibrierung während der Lebensdauer des Transmitters nicht erforderlich.

Einstellbares CO₂-Ausgangssignal

Durch Umlegen eines internen DIP-Schalters im CTDT2 wird das CO_2 -Ausgangssignal von 0...10~V auf 4...20~mA geändert. Diese Änderung hat keinen Einfluss auf den CO_2 -Ausgangsbereich.

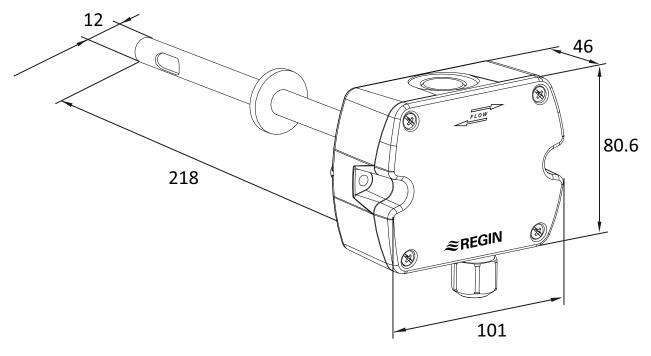
Technische Daten

Versorgungsspannung	24 V AC ± 20 %, 50/60 Hz 1535 V DC
Leistungsaufnahme	2 VA, 15 mA, max. 0,5 A für 0,3 s
Umgebungstemperatur	-20+60 °C
Lagertemperatur	-20+60 °C
Umgebungsfeuchte	095 % RH, nicht kondensierend
Langzeitstabilität	ca. 20 ppm/Jahr
Schutzart	IP65 mit Messelement nach unten, sonst IP20

CO_2

Ausgangssignal	010 V DC, -1 mA <i<math display="inline">_{L} <1 mA $_{L}$ <20 mA, R$_{L}$ < 500 Ω</i<math>
Messprinzip	NDIR (Nicht-dispersive Infrarot-Technologie)
Messbereich	02000 ppm
Genauigkeit (bei 25 °C)	< ± (50 ppm + 2 % Messwerts)
Zeitkonstante (Reaktionszeit)	< 100 s bei 3 m/s Luftgeschwindigkeit im Kanal
Temperaturabhängigkeit	ca. 1 ppm CO ₂ /K (-20+45 °C)
Aufheizzeit	< 5 min

Temperatur


Ausgangssignal	010 V DC, -1 mA <i<sub>L <1 mA</i<sub>
	010 V: 050 °C PT1000: -20+60 °C
Genauigkeit (bei 20 °C)	± 0,3 °C
Zeitkonstante (Reaktionszeit)	< 50 s

(€

Dieses Produkt trägt das CE-Zeichen. Weitere Informationen finden Sie unter www.regincontrols.de.

Abmessungen

[mm]

Verdrahtung

1	Versorgungsspannung 24 V AC oder 1535 V DC
2	Masse (System)
3	Masse (Signal)
4	CO ₂ -Ausgang 010 V DC oder 420 mA
5	Temperaturausgang 010 V DC
6	Temperaturausgang PT1000
7	Temperaturausgang PT1000

Dokumentation

Die gesamte Dokumentation kann von www.regincontrols.de heruntergeladen werden.

