

WE TAKE BUILDING AUTOMATION PERSONALLY

BENUTZERHANDBUCH PRESIGO PDT...

HAFTUNGSAUSSCHLUSS

Die Informationen in diesem Benutzerhandbuch sind sorgfältig überprüft und als korrekt angesehen worden. AB Regin gewährt keine Garantie für den Inhalt des Handbuches und bittet Fehler, Ungenauigkeiten und Doppeldeutigkeiten anzumerken, damit Korrekturen vorgenommen werden können. Änderungen der Informationen in diesem Dokument sind vorbehalten.

Die im Handbuch beschriebene Software steht unter dem Urheberrecht von Regin und kann nur im Einverständnis mit den vorgegebenen Lizenzbedingungen benutzt oder kopiert werden. Die Vervielfältigung oder der Weitervertrieb des Dokumentes, auch nur zum Teil, ist in jeder Form, auf jede Art und Weise, sei es elektronisch oder mechanisch, ohne Einverständnis von Regin untersagt.

COPYRIGHT

©AB Regin. Alle Rechte vorbehalten

WARENZEICHEN

Corrigo, E tool[©], EXOdesigner, EXOreal, EXOrealC, EXOline, EXO4, EXOscada, Optigo, Regio und Regio tool [©]sind von AB Regin registrierte Warenzeichen.

Windows, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows Server 2008, Windows 10 und Windows Server 2012 sind von Microsoft Corporation registrierte Warenzeichen.

Einige Produktnamen in diesem Handbuch werden nur zur Identifikation verwendet und können Markenzeichen der entsprechenden Firmen sein.

Revision G, September 2018

Software-Revision: 1.0

Inhaltsverzeichnis

KAPITEL DIE WICHTIGSTEN FAKTEN ÜBER PRESIGO PDTC(-2)	4
Technischen Daten	5
KAPITEL INSTALLATION UND KLEMMENBELEGUNG	7
Installation	
Verdrahtung	7
KAPITEL DIP-SCHALTER, RESETTASTE UND STATUS-LEDS	10
DIP-Schalter	10
Druckschalter (Resettaste)	11
STATUS LED	11
Statusparameter	12
KAPITEL BERECHNUNG DES DURCHFLUSSES AM VENTILATOR MIT PRESIGO PDTC(-2)	13
KAPITEL PARAMETER LISTE	15
Mögliche Einheiten beim Drucksensor 1 PDT12C	15
Mögliche Einheiten beim Drucksensor 1 PDT25C	15
Mögliche Einheiten beim Drucksensor 1 PDT75C	15
Mögliche Einheiten beim Drucksensor 1 und 2 PDT12C-2	15
Mögliche Einheiten beim Drucksensor 1 und 2 PDT12S25C-2	16
Mögliche Einheiten beim Drucksensor 1 und 2 PDT25C-2	
Mögliche Einheiten beim Drucksensor 1 und 2 PDT12S75C-2	
Mögliche Einheiten beim Drucksensor 1 und 2	16
Universelle Eingänge 1 und 2 Betriebsmodus	17
MODBUS PARAMETER	18
Eingangsregister (Funktion 04, nur lesen)	18
Digitale Eingänge (Funktion 2, nur lesen)	19
Konfigurationsregister (Funktion 3, nur lesen)	19
Reset (Funktionen 05)	20
Presigo PDTC(-2) DPACs	21
DPAC Qsystem, Nummer 241	21
DPAC Qanain, Nummer 201	22
DPAC PresignDPac Nummer 3	23

Kapitel Die wichtigsten Fakten über Presigo PDT...C(-2)

Die Presigo PDT...C(-2) Reihe besteht aus einem oder zwei Differenzdrucktransmittern, mit 2 universellen Eingängen und einer RS-485 Schnittstelle für den Datentransfer. Die RS-485 Schnittstelle kann einfach für das EXOline Protokoll oder das MOD-Bus-RTU Protokoll konfiguriert werden.

Es gibt zwei universelle Eingänge, die individuell als digitale oder analoge Eingänge (PT1000/Ni1000 Fühler oder 0..10V) konfiguriert werden können.

Im Gerät werden 2 MEMS-dual-chip Fühler Module für neutrale Gase verwendet, die auch im medizinischen Bereich Verwendung finden. Die Sensoren sind so angebracht, dass sie Druck und Durchfluß angeben. Für den Druck kann die Einheit für den Ausgabewert in Pa, mmH_2O , inH_2O oder mBar festgelegt werden. Für den Duchfluß kann die Einheit für den Ausgabewert in l/s oder m^3/h festgelegt werden.

Das Gerät verfügt über eine Resettaste für die Nullwerteinstellung sowie für den Reset auf die Werkseinstellung.

Anwendungen

Die Differenzdrucktransmitter sind besonders als dezentrale Ein-/Ausgabepunkte für Lüftungsregler geeignet. Der Transmitter arbeitet als "Slave" im MODbus oder EXOline Netzwerk und spart beim Lüftungsregler bis zu zwei analoge Eingänge für die Drucküberwachung sowie bis zu 2 universelle Eingänge ein. Zusätzlich verfügt das Gerät über virtuelle Ein-/Ausgabepunkte, die den Volumenstrom und Durchfluss liefern. Ein Presigo PDT...C(-2) Gerät deckt in der Regel die Bedürfnisse für die Hälfte eines typischen Lüftungsgerätes ab (Ventilator, Filter und zwei Temperaturen).

Der Presigo PDT...C(-2) wurde speziell für den schnellen Einsatz zusammen mit Regins Kompaktreglern Corrigo oder EXOcompact entwickelt.

Internes vom Presigo

Technischen Daten

Versorgungsspannung	24 V AC/DC ± 15 %
Schutzart	IP54
Berechneter Stromverbrauch	2 VA (rms) / min. Trafo 7,5 VA
Kommunikationsschnittstelle	. nicht isolierte RS-485 (max. 100 m)
Genauigkeit, Druck	
Jährliche Abweichung	
P1250 Modelle	<u>±2</u> Pa
P2500 Modelle	±4 Pa
P7500 Modelle	±20 Pa
Dämpfung (einstellbar)	112s
K-Faktor (einstellbar)	5700
Betriebstemperaturbereich	
Betriebsfeuchte	
Überspannung an jeder Klemme	Max.±18 V
Universaleingänge UI1,UI2	
Konfiguriert als PT1000 Eingang	
(Werkseinstellung)	40+60°C oder -40+140°F
(T@ 0.	
Konfiguriert als Ni1000 Eingang	
(T@ 0+50°C \pm 0.5	· 11 /
Konfiguriert als digitaler Eingang potentialfreier	Kontakt AN/AUS (geschlossen=AN)
Konfiguriert als $010~V~Eingang~\pm 1\%~Genaui$	gkeit über den gesamten Messbereich

Druckbereiche (über den gesamten Meßbereich)

Model		Pascal (Werkseinstellung)	mbar	mmH₂O	inH₂O
PDT12C	PS1	01250	012.5	0125	05
PDT25C	PS1	02500	025	0250	010
PDT75C	PS1	07500	075	0750	030
DDT12C 2	PS1	01250	012.5	0125	05
PDT12C-2	PS2	01250	012.5	0125	05
DDT12825C 2	PS1	01250	012.5	0125	05
PDT12S25C-2	PS2	02500	025	0250	010
DDT25C 2	PS1	02500	025	0250	010
PDT25C-2	PS2	02500	025	0250	010
DDT12875C 2	PS1	01250	012.5	0125	05
PDT12S75C-2	PS2	07500	075	0750	030

Hinweis: Der Zusatz in der Typenbezeichnung gibt die Anzahl der im Gerät befindlichen Fühler wieder:

- Ein Fühler (Nur PS1 vorhanden, das Auslesen von Parametern zu PS2 liefert den Wert Null).
- -2: Zwei Fühler

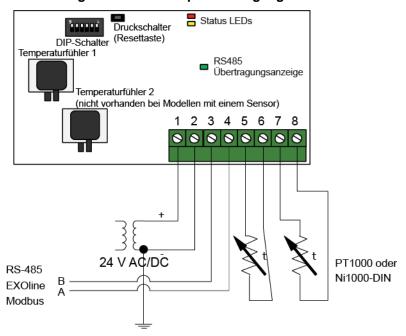
Das "S" in der Typenbezeichnung steht für "Split". Das bedeutet verschiedene Meßbereiche für PS1 und PS2.

Druckbereiche (über den gesamten Meßbereich)

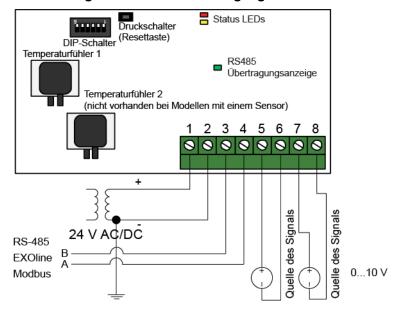
m3/h ((Werkseinstellung)	.0	.65000
CFM ((FT^3/min)	.0	.65000

Kapitel Installation und Klemmenbelegung

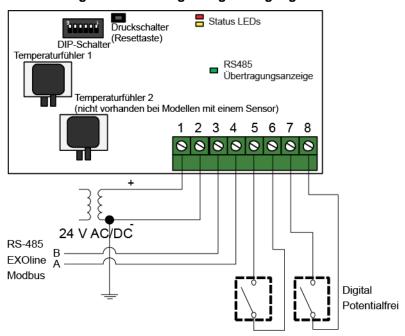
Installation


- 1. Montieren Sie den Transmitter horizontal oder vertikal an einer stabilen, vibrationsfreien Oberfläche. Wenn das Greät in einer feuchten Umgebung installiert wird, so sollte es vertikal, mit den Kabeleinführungen nach unten montiert werden, damit Feuchtigkeit entweichen kann.
- 2. Für die Verdrahtung betrachten Sie bitte die untere Grafik. Verbinden Sie das RS485 Kabel bitte mit Klemme 3(B) und 4(A). Verwenden Sie bitte die ganz links liegende Kabeleinführung für die Stromversorgung und die Kommunikationsleitung. Verwenden Sie bitte die ganz rechts liegende Kabeleinführung für die universellen Eingänge um eine Kreuzung der Kabel im Gerät zu vermeiden.
- 3. Stellen Sie die DIP-Schalter auf den gewünschten Betriebsmodus und die entsprechenden Parameter ein. Im Betriebsmodus MODbus hat das Gerät die voreingestellte Adresse 1. Im Betriebsmodus EXOline verwenden Geräte mit zwei Transmittern die Adresse 242:1 als Standardadresse und Geräte mit einem Transmitter die Adresse 242:3 als Standardadresse. Der DIP-Schalter 6 kann dazu verwendet werden die ELA Adresse zu verschieben um den Anschluss von 2 Geräten an einen Regler zur selben Zeit zu ermöglichen.
- 4. Schalten Sie das Gerät ein. Verwenden Sie die Parameterliste im Kapitel "Parameter" um auf die Parameter im Gerät zuzugreifen.

Verdrahtung


- 1. G(+)
- 2. GO(-)
- 3. RS485 EXOline/MODbus "B"
- 4. RS485 EXOline/MODbus "A"
- 5. UI1-Eingang
- 6. UI1 GND
- 7. UI2-Eingang
- 8. UI2 GND

Klemmen 2,6 und 8 sind galvanisch identisch (GND/G0)


Verdrahtung mit Ulx als Temperatureingang

Verdrahtung mit Ulx als 0...10V Eingang

Verdrahtung mit Ulx als Logik-/Digitaleingang

Der UIx Eingang kann individuell für PT1000, Ni1000, 0...10V oder als digitaler Eingang konfiguriert werden.

Kapitel DIP-Schalter, Resettaste und Status-LEDs

DIP-Schalter

Presigo PDT...C(-2) ist im Modbus oder EXOline ein "Slave"-Gerät. Das MODbus-RTU bzw. EXOline Protokoll wird über eine RS485-multidrop-twisted-pair Leitung tansportiert. Der Transmitter verfügt über einen DIP-Schalter mit dem die benötigten Kommunikationsparameter eingestellt werden. Diese Einstellungen können später vom "Master" im Netzwerk überschrieben werden.

Wenn die DIP-Schalter verändert wurden, so muss der Presigo aus- und wieder eingeschaltet werden, damit er die Schalterstellungen in die entsprechenden Parameter einliest. Bezüglich DIP-Schalter 6, siehe unten.

Wenn der Transmitter zusammen mit Regins CORRIGO Regler verwendet wird, dann wird er mit den Eingängen für Erweiterungsmodule 3,4,5 und 6 verbunden. Die Konfiguration findet dann über das E-tool© oder die Bedienung am CORRIGO statt.

Presigo sollte folgende EXOline Adresse verwenden:

Erweiterungseinheit im CORRIGO	PLA	ELA
3	242	1
4	242	2
5	242	3
6	242	4

Tabelle 1

Modelle mit zwei Drucktransmittern verwenden PLA:ELA Adresse 242:1 oder 242:2 als Standardadresse, während Modelle mit nur einem Drucktransmitter die Adresse 242:3 oder 242:4 verwenden, abhängig von der Stellung des DIP-Schalters 6 (siehe Tabelle 2, unten). Alle DIP-Schalter befinden sich werkseitig in der Stellung "OFF". Um die ELA Adresse (oder jede andere Kommunikationseinstellungaus Tabelle 2) zu ändern, sollte immer mit der Einstellung des DIP-Schalters 6 begonnen werden. Danach sollte das Gerät aus- und wieder eingeschaltet werden, damit die Einstellungen der DIP-Schalter übernommen werden.

Wenn Modelle mit einem Drucktransmitter an den Klemmen für die Erweiterungsmodule 3 oder 4 angeschlossen werden sollen, dann muss der Presigo auf die PLA-ELA Adresse 242:1 oder 242:2 eingestellt werden. Diese Einstellungen können mit Hilfe von EXOtest eingegeben werden. Modelle mit zwei Drucktransmittern müssen in ähnlicher Weise auf die Adressen 242:3 oder 242:4 eingestellt werden, wenn sie an die Klemmen für die Erweiterungsmodule 5 oder 6 angeschlossen werden sollen.

Falls die Adresse extern (durch Software) auf eine andere PLA:ELA Adresse als die Standardadresse gesetzt wurde, irgend ein DIP-Schalter verändert wurde und ein Neustart durchgeführt wurde, so wird wieder die Standardadresse übernommen und die Eingabe geht verloren.

Wenn ein Reset durch Drücken der Resettaste durchgeführt wird, so werden die DIP-Schaltereinstellungen neu eingelesen. Der Presigo kehrt dann zu seiner werkseitigen Einstellung zurück.

Bitte beachten Sie, dass **alle** Einstellungen auf die werksseitigen Werte zurück gestellt werden, wenn die Resettaste für 10 Sekunden oder länger gedrückt und gehalten wird.

DIP-Schalter	Parameter	Schalterstellung	Parametereinstellung
1 und 2	Baudrate	1 = AUS / 2 = AUS 1 = AN / 2 = AUS 1 = AUS / 2 = AN 1 = AN / 2 = AN	9600 bps 14400 bps 19200 bps 38400 bps
3 und 4	Paritäts-Bit	3 = AUS / 4 = AUS 3 = AN / 4 = AUS 3 = AUS / 4 = AN 3 = AN / 4 = AN	Ungerade Parität Gerade Parität Keine Parität, ein Stoppbit* Keine Parität, zwei Stoppbits*
5	EXOline oder Modbus Protokoll Auswahl	AUS (OFF) AN	EXOline MODbus
6	EXOline ELA Adressenverschiebung	AUS (OFF) AN	Keine Adressenverschiebung addiert ELA = ELA+1

Tabelle 2

Werksseitig ist der DIP-Schalter überall auf AUS (OFF) eingestellt, das bedeutet:

EXOline Protokoll mit 9600 baud, ungerade Parität und keine Adressenverschiebung.

Druckschalter (Resettaste)

Kurzer Tastendruck Druckfühler zurücksetzen.

Die gelbe LED leuchtet auf, solange das Zurücksetzen durchgeführt wird. Vergewissern Sie sich, dass vorher die Druckschläuche abgezogen sind. Lassen Sie dem Gerät ca. 10 Minuten Zeit um sich aufzuwärmen, bevor Sie es zurücksetzen.

Langer Tastendruck (min 10 Sek.) Zurücksetzen aller Werte auf die werksseitigen Einstellungen

Die rote und die gelbe LED blinken abwechselnd während diese Operation durchgeführt wird. Das Gerät wird dann zurückgesetzt und neu gestartet.

Status LED

Die rote Status LED leuchtet auf beim Einschalten und erlischt nach ein paar Sekunden, wenn die im Gerät befindlichen Sensoren bereit sind. Wenn die LED während des normalen Betriebsablaufs aufleuchtet, ist ein Fehler aufgetreten. Lesen Sie die globalen Status Parameter, um die Fehlerursache zu ermitteln.

^{*} Wenn keine Parität verwendet wird, dann gibt es beim Modbus standardmäßig 2 Stoppbits

Statusparameter

Die globalen Statusparameter sollten regelmäßig ausgelesen werden, um Störungen im Presigo PDT...C(-2) rechtzeitig zu entdecken.

Zusammenfassung der möglichen Zustände:

Wert	Beschreibung
Bit 0	Gerät ist bereit
Bit 1	Fühlertyp nicht bekannt
Bit 2	Interner (System) Fehler
Bit 3	Kalibrierung verloren
Bit 4	Fehler am universellen Eingang. Das Gerät wird versuchen in 5 Sekunden neu zu starten. Es wird nicht funktionieren, bis sich korrekte Daten im Mode Register befinden.
Bit 5	Fehler am Eingang des Drucktransmitters. Das Gerät wird versuchen in 5 Sekunden neu zu starten. Es wird nicht funktionieren, bis sich korrekte Daten im Mode Register befinden.

Tabelle 3

Kapitel Berechnung des Durchflusses am **Ventilator mit Presigo PDT...C(-2)**

Presigo kann so eingestellt werden, dass es den Durchluss basierend auf die kalkulierten gemessenen Durchflüsse an PS1 (AI1) und/oder PS2 (AI2) berechnet. Um den Durchfluss zu berechnen, benötigen Sie den Druckabfall über den Ventilator, die Dichte des Mediums (Luft) sowie die Stärke, mit der der Ventilator die Luft bewegt.

K-Faktor

Die Stärke des Ventilators, mit der er die Luft bewegt wird als K-Faktor bezeichnet. Ein großer Ventilator bewegt mehr Luft als ein kleiner.

Luftdichte

Der Durchfluss wird auch durch die Luftdichte beeinflußt. Die Luftdichte wiederum wird beeinflusst durch die Lufttemperatur.

Komplette Formel für die Berechnung des Durchflusses

Komplette Formel für die Berechnung des Durchflusses:

$$Q_v = K * \sqrt{\frac{2}{p}} * \sqrt{\Delta p_m}$$

 $Q_v = Berechneter Durchfluss$

K = K-Faktor

p = Luftdichte bei der momentanen Temperatur (oft auf 1.2 gesetzt bei ungefähr 20°C)

 ΔP_m = Gemessener Differenzdruck in Pascal

Vereinfachte Formel

Da sich die Luftdichte relativ wenig ändert in dem beschränkten Arbeitsbereich, in dem die Lüftungsanlage arbeitet, ist es nicht nötig, mehr Variablen in Betracht zu ziehen als den Differenzdruck, wenn man von einer Luftdichte bei 20°C ausgeht. Daraus ergibt sich eine ausreichend genaue Annäherung, da die meisten Lüftungsanlagen in diesem Temperaturbereich arbeiten. Die Hersteller von Lüftungsanlagen geben immer den K-Faktor für ein spezielles Gerät an, in denen die Luftdichte eine Rolle spielt. Unabhängig davon sollten die relevanten Werte angegeben werden. Manche Hersteller lassen die Luftdichte komplett aussen vor, so dass Sie K mit der Formel $\sqrt{(2/p)}$ unter Verwendung der Temperatur ihrer Wahl herleiten müssen.

Dies führt zu einer vereinfachten Formel:

$$Q_v = K_{Einheit} * \sqrt{\Delta p_m}$$

K_{Gerät} = vereinfachter K-Faktor (mit K-Faktor und der Luftdichte bei 20°C)

 ΔP_m = Gemessener Differenzdruck in Pascal

In der Regel wird der K-Faktor in unterschiedlichen Einheiten (m₃/h, l/s, ft₃/min, etc.) angegeben, so dass Sie selbst den Wert nicht umrechnen müssen.

Wie Presigo den Durchfluss mit Hilfe des vereinfachten K-Faktors berechnet

Im Presigo wird der Druck immer in Pascal gemessen. Deshalb ist es wichtig, den K-Faktor immer in m₃/h anzugeben. Danach besteht die Möglichkeit selbst festzulegen, in welcher Einheit das Ergebnis ausgegeben werden soll indem Sie QAnain.AIMode3 und QAnain.AIMode4 entsprechend einstellen. Wählen Sie zwischen Kubikmeter pro Stunde (m₃/h), Liter pro Sekunde (l/s) oder Kubikfuß pro Minute (ft₃/min), wenn Sie QAnain.AIMode3 und QAnain.AIMode4 verändern.

Kapitel Parameter Liste

Mögliche Einheiten beim Drucksensor 1 PDT12C

Wert	Einheit	Beschreibung	Sollwertbereich
0	Pascal (Werkseinstellung)	Pascal	01250
1	mbar	Millibar	012.5
2	mmH ₂ O	Millimeter Wassersäule	0125
3	inH ₂ O	Inch Wassersäule	05

Tabelle 4

Mögliche Einheiten beim Drucksensor 1 PDT25C

Wert	Einheit	Beschreibung	Sollwertbereich
0	Pascal (Werkseinstellung)	Pascal	02500
1	mbar	Millibar	025
2	mmH ₂ O	Millimeter Wassersäule	0250
3	inH ₂ O	Inch Wassersäule	010

Tabelle 5

Mögliche Einheiten beim Drucksensor 1 PDT75C

Wert	Einheit	Beschreibung	Sollwertbereich
0	Pascal (Werkseinstellung)	Pascal	07500
1	mbar	Millibar	075
2	mmH ₂ O	Millimeter Wassersäule	0750
3	inH ₂ O	Inch Wassersäule	030

Tabelle 6

Mögliche Einheiten beim Drucksensor 1 und 2 PDT12C-2

Wert	Einheit	Beschreibung	Sollwertbereich, PS1	Sollwertbereich, PS2
0	Pascal (Werkseinstellung)	Pascal	01250	01250
1	mbar	Millibar	012.5	012.5
2	mmH ₂ O	Millimeter Wassersäule	0125	0125
3	inH ₂ O	Inch Wassersäule	05	05

Tabelle 7

Mögliche Einheiten beim Drucksensor 1 und 2 PDT12S25C-2

Wert	Einheit	Beschreibung	Sollwertbereich, PS1	Sollwertbereich, PS2
0	Pascal (Werkseinstellung)	Pascal	01250	02500
1	mbar	Millibar	012.5	025
2	mmH ₂ O	Millimeter Wassersäule	0125	0250
3	inH ₂ O	Inch Wassersäule	05	010

Tabelle 8

Mögliche Einheiten beim Drucksensor 1 und 2 PDT25C-2

Wert	Einheit	Beschreibung	Sollwertbereich, PS1	Sollwertbereich, PS2
0	Pascal (Werkseinstellung)	Pascal	02500	02500
1	mbar	Millibar	025	025
2	mmH ₂ O	Millimeter Wassersäule	0250	0250
3	inH ₂ O	Inch Wassersäule	010	010

Tabelle 9

Mögliche Einheiten beim Drucksensor 1 und 2 PDT12S75C-2

Wert	Einheit	Beschreibung	Sollwertbereich, PS1	Sollwertbereich, PS2
0	Pascal (Werkseinstellung)	Pascal	01250	07500
1	mbar	Millibar	012.5	075
2	mmH ₂ O	Millimeter Wassersäule	0125	0750
3	inH ₂ O	Inch Wassersäule	05	030

Tabelle 10

Mögliche Einheiten beim Drucksensor 1 und 2

Wert	Einheit	Beschreibung	Sollwertbereich
0	m ³ /h (Werkseinstellung)	Kubikmeter pro Stunde	Fließkomma (hängt vom K-Faktor ab)
1	1/s	Liter pro Sekunde	Fließkomma (hängt vom K-Faktor ab)
2	(Ft ³ /min)	Kubikfuß pro Minute	Fließkomma (hängt vom K-Faktor ab)

Die universellen Eingänge können in verschiedene Modi eingestellt werden.

Universelle Eingänge 1 und 2 Betriebsmodus

Wert	Тур	Beschreibung	Sollwertbereich
0	kein	-	-
1	PT1000 (Werkseinstellung)	Temperatur - PT1000 Eingang	-40+60°C -40+140°F
8	Ni1000	Temperatur - Ni1000 Eingang	-40+60°C -40+140°F
9	010 V	Volt	010 V
6	Logik	Logik - potentialfreier Kontakt	0/1

Tabelle 12

MODbus Parameter

Eingangsregister (Funktion 04, nur lesen)

Reg	L/S	Beschreibung	Wert	Bedeutung	
4x0000	L	Druckfühler 1, lesen. Obere 16 Bit in einer 32-Bit Integer.	Siehe Tabelle 410 (*)	100	
4x0001	L	Druckfühler 1, lesen. Untere 16 Bit in einer 32-Bit Integer.			
4x0002	L	Druckfühler 2, lesen. Obere 16 Bit in einer 32-Bit Integer.	Siehe Tabelle 410 (*)	100	
4x0003	L	Druckfühler 2, lesen. Untere 16 Bit in einer 32-Bit Integer.			
4x0004	L	Durchflußfühler 1, lesen. Obere 16 Bit in einer 32-Bit Integer.	siehe Tabelle 11. (*)	100	
4x0005	L	Durchflußfühler 1, lesen. Untere 16 Bit in einer 32-Bit Integer.			
4x0006	L	Durchflußfühler 2, lesen. Obere 16 Bit in einer 32-Bit Integer.	siehe Tabelle 11.(*)	100	
4x0007	L	Durchflußfühler 2, lesen. Untere 16 Bit in einer 32-Bit Integer.			
4x0008	L	Wert vom universellen Eingang 1 In °C im Temperaturmodus, in Volt beim 010V- Modus	-4060°C 010 V	10	
4x0009	L	Wert vom universellen Eingang 2 In °C im Temperaturmodus, in Volt beim 010V-Modus	-4060°C 010 V	10	
4x0010	L	Wert vom universellen Eingang 1, Temperatur in Fahrenheit. Nur gültig im Temperaturmodus.	-40140°F	10	
4x0011	L	Wert vom universellen Eingang 2, Temperatur in Fahrenheit. Nur gültig im Temperaturmodus.	-40140°F	10	
4x0012	L	Rohwert vom universellen Eingang 1	01500		
4x0013	L	Rohwert vom universellen Eingang 2	01500		
4x0014	L	Rohwert vom Druckfühler 1	030000		
4x0015	L	Rohwert vom Druckfühler 2	030000		
4x0016	L	Modellnummer	13001399		
4x0017	L	Interne Revisionsnummer	09999		
4x0018	L	Globaler Geräte Status	Anordnung von Bits	Siehe Tabelle 3	

^{*} vom Modell abhängig

Digitale Eingänge (Funktion 2, nur lesen)

Reg	L/S	Beschreibung	Wert	Bedeutung
2x0000	L	Universeller Eingang 1 Digitalmodus (gültig nur im digitalen Modus)	0/1	offen/geschlossen
2x0001	L	Universeller Eingang 2 Digitalmodus (gültig nur im digitalen Modus)	0/1	offen/geschlossen

Tabelle 14

Konfigurationsregister (Funktion 3, nur lesen)

Reg	L/S	Beschreibung	Wert	Bedeutung
3x0000	L/S	Modus Druckfühler 1 (Meßeinheit)	Siehe Tabelle 410	Index
3x0001	L/S	Modus Druckfühler 2 (Meßeinheit)	Siehe Tabelle 410	Index
3x0002	L/S	Modus Durchflusssensor 1 (Messeinheit)	Siehe Tabelle 11	Index
3x0003	L/S	Modus Durchflusssensor 2 (Messeinheit)	Siehe Tabelle 11	Index
3x0004	L/S	Modus universeller Eingang	Siehe Tabelle 12	Index
3x0005	L/S	Modus universeller Eingang 2	Siehe Tabelle 12	Index
3x0006	L/S	Dämpfungsfaktor Druckfühler 1	1120	10 (Zehntel einer Sekunde)
3x0007	L/S	Dämpfungsfaktor Druckfühler 2	1120	10 (Zehntel einer Sekunde)
3x0008	L/S	K-Faktor für die Durchflussmessung, Fühler 1	5600	ohne Dimension (Einheit)
3x0009	L/S	K-Faktor für die Durchflussmessung, Fühler 2	5600	ohne Dimension (Einheit)
3x0010	L/S	Baudrate der RS-485-Schnittstelle	Siehe DPac Beschreibung	Index (**)
3x0011	L/S	Portmodus/Protokoll der RS-485- Schnittstelle	-	Index (***)
3x0012	L/S	Port-Format der RS-485-Schnittstelle	Siehe DPac Beschreibung	Index (**)
3x0013	L/S	MODbus Geräteadresse	Siehe DPac Beschreibung	Index

Tabelle 15

^{**} Wird eingestellt durch die DIP-Schalter, kann mittels der Kommunikationsschnittstelle auf einen anderen Wert gesetzt werden (ist jedoch nicht empfohlen und daher in diesem Handbuch auch nicht weiter beschrieben).

^{***} Bitte nicht verstellen! Wird eingestellt durch die DIP-Schalter

Reset (Funktionen 05)

Reg	L/S	Beschreibung	Wert	Bedeutung
5x0000	S	Neustart vom Gerät	0->1	Macht einen Warmstart
5x0001	S	Nullkalibrierung der Drucksensoren 1 und 2	0->1	Nullkalibrierung (Identisch mit Drücken der Resettaste)

Tabelle 16

Presigo PDT...C(-2) DPACs

DPAC Qsystem, Nummer 241

Parameter- name	Zellen- nummer	Parameter- typ	Lesen/ Schreiben	Parameter- beschrei- bung	Standard- wert	Bereich/ Wert	Beschreibung
PLA	0	Index	L/S	PLA Adresse	242	1-255	Byte
ELA	1	Index	L/S	ELA Adresse	1 für Modelle mit zwei Sensoren und 3 für Modelle mit einem Sensor	1-255	Byte
Ver_Minor	16	Index	L	Version (Fractional Part)	-	-	Fixed Byte
Ver_Major	17	Index	L	Version (Integer Part)	(Integer		Fixed Byte
Modell	36	Integer	L	Modellnum mer	-	1301- 1333	Fixed Integer
CPU-Speed	39	Index	L	CPU-Speed in MHz	16	16	Fixed Byte
Ver_Branch	40	Index	L	Revisionsnu mmer (Branch Part)	-	-	Fixed Byte
Ver_Number	41	Index	L	Revisionsnu mmer (Number Part)	-	-	Fixed Byte
AsmModel	54	Integer	L	Anwendungs spezifisches Modell	0	-	Nummer um OEM-Varianten zu unterscheiden
String für Seriennummer	60	String	L	Seriennumm er vom Gerät	-	-	01YYMMXXXX
SVNVersion	80	Integer	L	SVN Version oder momentanen Firmware	-	-	-
VendorName	109	String	L	Name of Vendor	-	-	Name of Vendor

DPAC Qanain, Nummer 201

Parameter- name	Zellen- nummer	Parame- tertyp	Speicher- klasse	Lesen/ Schrei- ben	Parameter- beschreibung	Standard- wert	Bereich/ Wert	Beschrei- bung
AIMode1	1	Index	EE	L/S	Druckmodus des PSA Sensors	0	03	Siehe Tabelle 410
AIMode2	2	Index	EE	L/S	Druckmodus des PSB Sensors	0	03	Siehe Tabelle 410
AIMode3	3	Index	EE	L/S	Durchflussmodus des PSA Sensors	0	02	Siehe Tabelle 11
AIMode4	4	Index	EE	L/S	Durchflussmodus des PSB Sensors	0	02	Siehe Tabelle 11
AIMode5	5	Index	EE	L/S	Modus für den universellen Eingang UI1	1	0,1,6,8,9	Siehe Tabelle 12
AIMode6	6	Index	EE	L/S	Modus für den universellen Eingang UI2	1	0,1,6,8,9	Siehe Tabelle 12
AI1	18	Real	RA	L	Druck (Wert) des PSA Sensors	-	Weicht ab von den AIMode1 Einstellungen	Fließ- komma
AI2	21	Real	RA	L	Druck (Wert) des PSB Sensors	-	Weicht ab von den AIMode2 Einstellungen	Fließ- komma
AI3	24	Real	RA	L	Durchfluss Wert des PSA Sensors	-	Weicht ab von den AIMode3 Einstellungen	Fließ- komma
AI4	27	Real	RA	L	Durchfluss Wert des PSB Sensors	-	Weicht ab von den AIMode4 Einstellungen	Fließ- komma
AI5	30	Real	RA	L	Wert für UI1	-	Weicht ab von den AIMode5 Einstellungen	Fließ- komma
AI6	33	Real	RA	L	Wert für UI2	-	Weicht ab von den AIMode6 Einstellungen	Fließ- komma

DPAC PresigoDPac, Nummer 3

Parametername	Zellen- nummer	Parame- tertyp	Speicher- klasse	Lesen/ Schrei- ben	Parameter- beschreibung	Standard- wert	Bereich/ Wert	Beschrei- bung
Gerätestatus	0	Index	RA	L	Globaler Gerätestatus als Bitfeld	-	Bit 05	Siehe Tabelle 3
DI1	1	Logik	RA	L	Digitaleingang	-	0/1	Status vom Eingang
DI2	2	Logik	RA	L	Digitaleingang	-	0/1	Status vom Eingang
Durchfluss_K_Fak-tor_PSA	10	Integer	EE	L/S	K-Faktor für den Durchfluss	5	5700	Integer Wert
Durchfluss_K_Fak-tor_PSB	12	Integer	EE	L/S	K-Faktor für den Durchfluss	5	5700	Integer Wert
Druck- DämpfFaktor_PSA	14	Integer	EE	L/S	Dämpfungs- faktor	10	10120	Zeit in Zehntel pro Sekunde
Druck- DämpfFaktor_PSB	16	Integer	EE	L/S	Dämpfungs- faktor	10	10120	Zeit in Zehntel pro Sekunde
Mode_Port_1	20	Index	EE	L/S	Serielle Schnittstellen Port Modus	DIP-SCH	2 15	EXOline MODbus
Format_Port_1	21	Index	EE	L/S	Datenformat der seriellen Schnittstelle	DIP-SCH	16	8-bit data, no parity, 1 stopbit
							48	8-bit data, even parity, 1 stopbit
							112	8-bit data, odd parity, 1 stopbit
Baud_Port_1	22	Index	EE	L/S	Serial port bit	DIP-SCH	0	9600 Baud
					rate		2	2400 Baud
							15	19200 Baud
Extra_TimeOut_Po rt_1	23	Index	EE	L/S	Extra character timeout for port 1	0	17	38400 Baud (Gerät: 4ms)
ModbusUnitID	30	Index	EE	L/S	Modbus Geräteadresse	1	1-247	MODbus- Adresse
ModbusCharTimeo ut_Port_1	31	Integer	EE	L/S	Modbus character timeout (ms)	3	-	Integar constant (1.5 x character time)
ModbusAnswerDel ay_Port_1	33	Integer	EE	L/S	Modbus- Antwortverzö- gerung (ms)	5	-	Integar constant (3.5 x character time)
Nixus_Warmstart	40	Logik	RA	S	Logik um einen Warmstart auszulösen	-	1	Auslösen eines Warmstarts

Parametername	Zellen- nummer	Parame- tertyp	Speicher- klasse	Lesen/ Schrei- ben	Parameter- beschreibung	Standard- wert	Bereich/ Wert	Beschrei- bung
Nixus_ZeroPSOff- set	41	Logik	RA	S	Logik um eine Nullkali- brierung auszulösen	-	1	Auslösen der Nullkali- brierung des Druck- sensors
NixusUI1_Deg_F	50	Real	RA	L	Temperatur UI1 in Fahrenheit	-	- 40+14 0	°F
NixusUI2_Deg_F	53	Real	RA	L	Temperatur UI2 in Fahrenheit	-	- 40+14 0	°F
NixusUI1_Raw	56	Real	RA	L	Rohwert für UI1	-	vom Modus abhängig	Ungefilter- ter Wert, wird von ATE genutzt, im Bereich zwischen - 10+1500 abhängig vom Modus
NixusUI2_Raw	59	Real	RA	L	Rohwert für UI2	-	vom Modus abhängig	Ungefilter- ter Wert, wird von ATE genutzt, im Bereich zwischen - 10+1500 abhängig vom Modus
NixusPSA_Raw	62	Real	RA	L	Rohwert für Drucksensor A	-	03276 7	Ungefilter- ter Druck Wert ohne Einheit
NixusPSB_Raw	65	Real	RA	L	Rohwert für Drucksensor B	-	03276 7	Ungefilter- ter Druck Wert ohne Einheit
NixusPSA_Offset	68	Real	EE	L/S	Nutzer Offest Kalibrierwert PSA	0	< 0	Immer negativ, wenn gültig
NixusPSB_Offset	71	Real	EE	L/S	Nutzer Offest Kalibrierwert PSB	0	< 0	Immer negativ, wenn gültig